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[1] In this study, we present an efficient approach, called the probabilistic collocation
method (PCM), for uncertainty analysis of flow in unsaturated zones, in which the
constitutive relationship between the pressure head and the unsaturated conductivity is
assumed to follow the van Genuchten-Mualem model. Spatial variability of soil
parameters leads to uncertainty in predicting flow behaviors. The aim is to quantify the
uncertainty associated with flow quantities such as the pressure head and the effective
saturation. In the proposed approach, input random fields, i.e., the soil parameters, are
represented via the Karhunen-Loeve expansion, and the flow quantities are expressed by
polynomial chaos expansions (PCEs). The coefficients in the PCEs are determined by
solving the equations for a set of carefully selected collocation points in the probability
space. To illustrate this approach, we use two-dimensional examples with different input
variances and correlation scales and under steady state and transient conditions. We also
demonstrate how to deal with multiple-input random parameters. To validate the PCM,
we compare the resulting mean and variance of the flow quantities with those from
Monte Carlo (MC) simulations. The comparison reveals that the PCM can accurately
estimate the flow statistics with a much smaller computational effort than the MC.
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1. Introduction

[2] One of the crucial problems in modeling flow and
transport in the subsurface is the treatment of uncertainty.
Uncertainty may be caused by a number of factors. It is well
known that geological media exhibit a high degree of spatial
variation over various scales. The properties that control
flow and transport in the media, such as permeability and
porosity, are also strongly heterogeneous in space. This
spatial variability may have a strong impact on fluid flow in
the media. Furthermore, these properties are usually mea-
sured only at a limited number of locations because of the
high cost associated with subsurface measurements.
Although the media properties are deterministic, because
of the lack of information it is common to treat them as
spatially varying random fields, characterized by the statis-
tical moments that are derived from a limited number of
measurements. In turn, the partial differential equations
governing the subsurface flow in such media become
stochastic.
[3] In this study, we consider flow in the heterogeneous

vadose zone, which connects the hydrology process above

the land surface and the saturated aquifer in the subsurface.
The vadose zone also acts as a buffer and passage in the
process of pollutants movement from the land surface to
groundwater. Because of its important role in determining
the pathway of pollutants, the vadose zone has received
increasing attention in recent years. Because of the coexis-
tence of water and air phases in this zone, the equation
governing the flow in this zone becomes nonlinear; that is,
the hydraulic conductivity depends on the pressure head.
The nonlinear property coupled with uncertainty leads to a
great complexity in the numerical simulations.
[4] Many stochastic approaches have been developed to

study the effect of spatial variability on flow in unsaturated
zone [Jury, 1982; Yeh et al., 1985a, 1985b; Mantoglou and
Gelhar, 1987; Mantoglou, 1992; Russo, 1993, 1995;
Tartakovsky et al., 1999; Zhang and Winter, 1998; Zhang,
1999, 2002; Lu and Zhang, 2002; Yang et al., 2004]. The
Monte Carlo (MC) simulation is the best known and widely
used approach in solving stochastic equations. As a statis-
tical sampling approach, the MC is conceptually straight-
forward and easy to implement. The input random
parameters are sampled repeatedly and independently from
prescribed distributions, which may be inferred on the basis
of the field observations. Then, for each realization (sample)
of input random fields, deterministic governing equations
are solved to obtain the corresponding realization of output
random fields. The required statistical properties, such as
the statistical moments and probability density functions,
can then be estimated on the basis of these output realiza-
tions. A large number of realizations are needed to achieve
statistical convergence. Such a procedure usually leads to a
high computational cost. As such, the applicability of MC is
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often limited to small scale problems. In this study, for the
purpose of validating the proposed approach, a large num-
ber of MC simulations are used and the results from these
MC simulations are considered as the reference.
[5] In this study, a Karhunen-Loeve (KL) expansion

based probabilistic collocation method (PCM) is presented
for predicting flow in the vadose zone. This approach has
been used for stochastic analysis in some fields [Webster et
al., 1996; Tatang et al., 1997]. Coupled with the Karhunen-
Loeve expansion of the random permeability field, Li and
Zhang [2007, 2009] applied the PCM method to the
simulation of single and multiphase flow in heterogeneous
porous media. Chang and Zhang [2009] demonstrated the
efficiency of PCM in dealing with such problems by
comparing it with other approaches. In this approach, the
input random field is first expressed as the sum of its mean
field and a zero mean perturbation, which is further decom-
posed by a KL expansion with an infinite number of terms.
By truncating the KL series at a finite number of terms, the
stochastic model is simplified into finite stochastic dimen-
sions. That is, the random field is represented with a finite
set of independent random variables. The steps in imple-
menting the PCM are similar to those of MC in that
replicates of the random field are solved deterministically.
However, the input replicates are not randomly and equally
probably sampled but selected following certain rules and
thus referred to as ‘‘representations’’ in this work. The
objective of these selection rules is to significantly reduce
the number of model simulations required for adequate
estimation of output uncertainties, compared to the conven-
tional MC method.

2. Stochastic Differential Equations

[6] Consider flow in unsaturated porous media satisfying
the following continuity equation and Darcy’s law:

Bðx;yÞ @yðx; tÞ
@t

þr � qðx; tÞ ¼ gðx; tÞ; ð1Þ

q x; tð Þ ¼ �K x;yð Þr yðx; tÞ þ x1½ 	; ð2Þ

subject to initial and boundary conditions:

yðx; 0Þ ¼ y0ðxÞ; x 2 D ð3Þ

yðx; tÞ ¼ HBðx; tÞ; x 2 GD; ð4Þ

qðx; tÞ � n ¼ Qðx; tÞ; x 2 GN ; ð5Þ

where q is the specific discharge (flux), g is the sink/source
term, y is the pressure head, x1 is the elevation, y + x1 is the
total head, and K(x, y) is the unsaturated hydraulic
conductivity, which depends on pressure head y . HB(x, t)
and Q(x, t) are prescribed pressure head and flux on
Dirichlet and Neumann boundary segments, respectively.
The specific moisture capacity is defined as B = dqe/dy ,
where qe = q � qr is the effective water content.
[7] To solve the set of equations described above, one

must specify the constitutive relationship between K, B and

y . Some empirical models have been investigated, includ-
ing the Gardner-Russo model [Gardner, 1958; Russo,
1988], the Brooks-Corey model [Brooks and Corey, 1964],
and the van Genuchten-Mualem model [van Genuchten,
1980]. In this study, we adopt the van Genuchten-Mualem
model:

Kðx; tÞ ¼ KsðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Seðx; tÞ

p
1� ½1� S1=me ðx; tÞ	m
n o2

; ð6Þ

Seðx; tÞ ¼ 1þ ½�aðxÞyðx; tÞ	nf g�m
; ð7Þ

Bðx; tÞ ¼ aðxÞ½nðxÞ � 1	ðqs � qrÞS1=me ðx; tÞ½1� S1=me ðx; tÞ	m ð8Þ

where Ks is the saturated hydraulic conductivity, Se =
qe/(qs � qr) is the effective saturation, qs and qr are the
respective saturated and residual water content, a is a fitting
parameter that is inversely related the mean pore size, n > 1
is another fitting parameter that is inversely related to the
width of the pore size distribution, and m = 1 � 1/n. The
dependent variables y and Se can be written as functions of
space/time coordinate (x, t), sink/source (g), boundary
conditions (HB, Q), and soil properties (Ks, a, n, qs, qr): y =
y(x, t, g, HB, Q, Ks, a, n, qs, qr), Se = Se(x, t, g, HB, Q, Ks, a,
n, qs, qr).
[8] Uncertainty associated with any argument in y and Se

may lead to uncertainty in y and Se. In this study, we
assume Ks, a, n to be random fields whereas other argu-
ments are deterministic. They are three input fields in our
model. Our purpose is to estimate the statistical properties,
i.e., the mean and variance, of the flow quantities such as
the pressure and effective saturation, which are the output
fields in our model.

3. Representation of the Input Random Fields:
Karhunen-Loeve Expansion

[9] The first step of solving stochastic equations is to find
a proper way to represent the input and output random
fields. In this study, we use Karhunen-Loeve expansion
(KL) to represent the input fields, for given covariance
functions of the input fields. Since the covariance structures
of the output fields are not known in advance, they cannot
be expanded using the KL expansion. Instead, they are
expressed in a form of Polynomial Chaos Expansion (PCE)
as described in section 4.

3.1. Single-Input Random Field

[10] Consider an input random field U(x, w), where x 2 D
is the coordinates in the physical domain and w 2 W denotes
the coordinates in the probability space. It is assumed that the
mean and covariance function of U(x, w) are known: U (x) =
hU(x, w)i, CU (x1, x2) = h[U(x1, w) � U (x1)][U(x2, w) �
U(x2)]i. These statistical moments can be estimated from
the field data. For example, for any two points x1 = (x11, x12,
x13)

T and x2 = (x21, x22, x23)
T in domain D, the covariance

function may take the separate exponential form

CU x1; x2ð Þ ¼ s2
U exp �

X3
i¼1

jx1i � x2ij
li

" #
; ð9Þ
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or the Gaussian form

CU x1; x2ð Þ ¼ s2
U exp �p

4

X3
i¼1

x1i � x2i

li

� 	2
" #

: ð10Þ

In the above, sU
2 is the variance, li is the correlation length in

the ith dimension. By definition, the covariance function is
symmetric and positive definite, which means that it can be
decomposed as [Courant and Hilbert, 1953]:

CU x1; x2ð Þ ¼
X1
i¼1

hi ~Uiðx1Þ ~Uiðx2Þ; ð11Þ

where hi and ~Ui(x) are the eigenvalues and eigenfunctions
of the covariance function, respectively. They can be solved
from the following Fredholm equation of second kind:

Z
D

CU x1; x2ð Þ ~Uiðx2Þdx2 ¼ hi ~Uiðx1Þ: ð12Þ

Because of the symmetry and the positive definiteness of
the covariance function, its eigenvalues are positive and
real, and its eigenfunctions are orthogonal and form a
complete set,

Z
D

~UiðxÞ ~UjðxÞdx ¼ dij; ð13Þ

where dij is the Kronecker delta function, which equals to
one for i = j and zero otherwise. Then the random field can
be expressed as

U x;wð Þ ¼ UðxÞ þ U 0 x;wð Þ ¼ UðxÞ þ
X1
i¼1

xiðwÞ
ffiffiffiffi
hi

p ~UiðxÞ; ð14Þ

where xi are a set of orthogonal random variables satisfying
hxii = 0 and hxixji = dij. When the underlying random field
is Gaussian, xi are independent, standard Gaussian random
variables. The expansion in equation (14) is called the KL
expansion. The random field U(x, w) is decomposed as the
sum of its mean and a mean-removed part, which is further
represented by a series of KL terms. Without loss of
generality, it is assumed that the eigenvalues have been
sorted in a nonincreasing order h1 � h2 � . . . and their
corresponding eigenfunctions are also sorted accordingly.
By truncating the infinite KL series at the Nth term, U(x, w)
is approximated via N random variables xi, i = 1,. . ., N,
weighted by the eigenvalues and deterministic eigenfunc-
tions. When the underlying random field is Gaussian, this
approximation is optimal with mean square convergence.
For some particular covariance functions defining on
regular domains (such as rectangular domains in 2-D),
eigenvalues and eigenfunctions can be solved analytically
[Ghanem and Spanos, 1991; Zhang and Lu, 2004].
However, in general, the integral equation (12) has to be
solved numerically [Ghanem and Spanos, 1991].
[11] One of the interesting features of the KL expansion is

that the sum of all eigenvalues is related to the total variability
of the input field. Setting x1 = x2 = x in equation (11),

integrating it over the domain D, and recalling orthogonality
of the eigenfunctions yields

Z
D

s2
U ðxÞdx ¼

Z
D

CU x; xð Þdx ¼
Z
D

X1
i¼1

hiU
2
i ðxÞ

" #
dx ¼

X1
i¼1

hi;

ð15Þ

where sU
2 (x) = CU (x, x) is the variance function of

U(x, w). If U(x, w) is second-order stationary, (15) leads toP1
i¼1hi = jDjsU2 , where jDj is the measure of the domain D.

Equation (15) indicates that the total variability of U(x, w)
over the whole domain is distributed to all KL terms, with
the weight of hi. The KL decomposition can also be applied
to nonstationary random fields due to conditioning on direct
measurements [Lu and Zhang, 2004] or zonation [Lu and
Zhang, 2007]. The KL decomposition is a spectral decom-
position. As will be shown in the illustrative examples,
different KL terms reflect the variability on different length
scales. So the physical meaning of the KL expansion is to
separate the uncertainty on different spatial scales. Thus we
can effectively approximate the stochastic property of a
random field with relatively few random variables, by
retaining those leading KL terms (terms with large
eigenvalues).

3.2. Multiple-Input Random Fields

[12] For many models, such as the case we will show in
the illustrative examples, there could be more random
parameters than only one. Consider multiple random fields
defined on the same physical domain: Ui, i = 1, 2,. . ., M.
Their mean functions Ui(x) = hUi(x, w)i and covariance
functions CUi

(x1, x2) = h[Ui(x1, w) � Ui(x1)][Ui(x2, w) �
U i(x2)]i are prescribed. The correlations between these
random fields are described by the correlation coefficients:

gUiUj
¼
�
Uiðx;wÞ � UiðxÞ
 �

Ujðx;wÞ � UjðxÞ
 ��

sUi
sUj

ð16Þ

sUi
is the standard deviation of Ui and gUiUj

2 [�1, 1]. Ui

and Uj are perfectly correlated when gUiUj
= ±1. gUiUj

(i, j = 1,
2, . . ., M) form an M by M symmetric and positive
definite matrix, which means that it can be decomposed

into gUiUj
=
PM
k¼1

LikLjk by Cholesky decomposition, where Lik

denotes an M by M lower triangular matrix. Furthermore,
we have the KL decomposition,

CUi
x1; x2ð Þ ¼

X1
m¼1

him ~U
i

mðx1Þ ~U
i

mðx2Þ; ð17Þ

where hm
i and ~Um

i are the eigenvalues and the eigenfunc-
tions of Ui, respectively. Then we can incorporate the
correlation into the representation of the input random fields
as the following

Ui x;wð Þ ¼ UiðxÞ þ U 0
i x;wð Þ

¼ UiðxÞ þ
X1
m¼1

ffiffiffiffiffiffi
h i
m

q
~U
i

mðxÞ
XM
k¼1

Likxkm

 !
ð18Þ
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where {xkm} are independent Gaussian random variables. It
can be shown that the KL representation (18) has the same
mean and covariance functions as the prescribed input
fields. By truncating the infinite summation in (18) at the
Nth term, again, we can approximately represent the input
random fields via N � M random variables {x11, x12, . . .,
x1N, x21, . . .x2N, . . ., xM1, . . .xMN},

Ui x;wð Þ ¼ UiðxÞ þ U 0
i x;wð Þ

¼ UiðxÞ þ
XN
m¼1

ffiffiffiffiffiffi
him

q
~U
i

mðxÞ
XM
k¼1

Likxkm

 !
: ð19Þ

4. Representation of the Output Fields:
Polynomial Chaos Expansion

4.1. General Formulation

[13] Because the output random field y or Se depends on
the input, it can be shown that y or Se is a function of the
random vector x = (x1, x2,. . ., xN)

T, where xi are the random
variables used to approximate the input parameters. How-
ever, the specific relationship between the output random
fields and x is yet to be determined.
[14] Since the statistics of the output random fields are

not known in advance, y or Se cannot be represented using
the KL expansion. Alternatively, PCE is a more general
representation for the output fields. In the following deri-
vations, we take the pressure head as an example. The
effective saturation can be expanded in a similar way.
Suppose y can be expanded by a polynomial form:

y x; t; xð Þ ¼ a0 x; tð Þ þ
X1
i1¼1

ai1 x; tð ÞG1 xi1
� �

þ
X1
i1¼1

Xi1
i2¼1

ai1i2 x; tð ÞG2 xi1 ; xi2
� �

þ
X1
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ai1 i2i3 x; tð ÞG3 xi1 ; xi2 ; xi3
� �

þ . . . ; ð20Þ

where a0(x, t) and ai1i2. . .id(x, t) are deterministic coeffi-
cients. The basis Gd(xi1, . . ., xid) is a set of polynomial chaos
with respect to those independent random variables xi1, . . .,
xid [Wiener, 1938]. For independent standard Gaussian
random variables, Gd(xi1, . . ., xid) are the multidimensional
Hermit polynomials with order of d. They are expressed as

Gdðxi1 ; . . . ; xid Þ ¼ ð�1Þde12x
T x @d

@xi1 . . . @xid
e
1
2
xT x

� �
; ð21Þ

where x = (xi1,. . ., xid)
T [e.g., Li and Zhang, 2007]. By

truncating the polynomial series in equation (20) at a certain
order, we have an approximation of the output random field.

In particular, the second-order approximation with Hermit
polynomials can be written as

ŷ x; t; xð Þ ¼ a0 x; tð Þ þ
XN
i¼1

ai x; tð Þxi þ
XN
i¼1

aii x; tð Þ x2i � 1
� �

þ
XN
i¼1

Xi�1

j¼1

aij x; tð Þxixj; ð22Þ

or a simplified form

ŷ x; t; xð Þ ¼
XP
j¼1

cj x; tð ÞFj xð Þ: ð23Þ

[15] There is a one-to-one correspondence between the
terms in (22) and (23). For example, F1(x) = 1, F2(x) = x1,
and FN+2(x) = (x1

2 � 1). The total number of PCE terms is
P = (N + d)!/(N!d!), where N is the random dimensionality
(the number of KL terms retained to represent the mean-
removed random input fields) and d is the order of polyno-
mial chaos.

4.2. Leading Term Approximation

[16] As will be shown in section 5, the computational
effort required to implement the PCM is regulated by the
total number of terms retained in the PCE. However, this
number P will increase significantly as the number (N) of
terms kept in the truncated KL approximation grows. To
avoid this burden, one may retain only those leading terms
in the PCE approximation. For example, we may eliminate
all the cross terms in (22),

ŷ x; t; xð Þ ¼ a0 x; tð Þ þ
XN
i¼1

ai x; tð Þxi þ
XN
i¼1

aii x; tð Þ x2i � 1
� �

ð24Þ

and the number of terms in the approximate polynomials is
reduced to P = 1 + 2N.

4.3. Statistical Moments

[17] One of the important properties of the polynomial
chaos is that all the polynomials in equation (23) are mutually
orthogonal, which means hFi(x)Fj(x)i = 0 for i 6¼ j, and for
i = j, hFj

2i can be evaluated easily [Ghanem and Spanos,
1991]. Once the coefficients cj(x, t) are determined, as
described in section 5, the statistical properties of the flow
quantities such as the pressure head and the effective satura-
tion can be easily estimated from equation (23). For example,
the mean pressure head is

ŷ x; t; xð Þ ¼ hŷ x; t; xð Þi ¼
XP
j¼1

cj x; tð ÞhFj xð Þi ¼ c1 x; tð Þ: ð25Þ

Note that in deriving equation (25), we have used the
following properties of the polynomial chaos: F1(x) = 1,
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and hFj(x)i = hFj(x)F1(x)i = 0 for j = 2, 3, . . .P. The variance
of the pressure head is

s2
ŷ ¼ h ŷ x; t; xð Þ � hŷ x; t; xð Þið Þ2i

¼
XP
j¼2

XP
k¼2

cj x; tð Þck x; tð ÞhFjðxÞFkðxÞi

¼
XP
j¼2

c2j x; tð ÞhF2
j i; ð26Þ

where hFj
2i can be evaluated in advance. Higher statistical

moments can be calculated similarly.

5. Probabilistic Collocation Method

[18] Galerkin’s approach and Probabilistic Collocation
Method (PCM) are two of the methods that may be used
to determine the coefficients cj(x) in the polynomial expan-
sion. Here we choose the PCM, which leads to independent
equations and is thus capable of easily dealing with com-
plex nonlinear problems.

5.1. Implementation of Probabilistic Collocation
Method

[19] The probabilistic collocation method has no essential
differences compared with the typical collocation method
except that the typical collocation method is used to obtain a
deterministic solution whereas the PCM is used to seek a
random solution defined on probability space. Again, we
only demonstrate how to determine the coefficients in the
PCE approximation of the pressure head. The coefficients in
the PCE approximation of the effective saturation can be
determined similarly. Let y = y(x, t, x) denote the solution
of the nonlinear stochastic differential equations. We seek
an approximate solution as described in equation (23). We
define the residual between the unknown solution y(x, t, x)
and this approximation as

RP x; t; xð Þ ¼ y x; t; xð Þ � ŷ x; t; xð Þ: ð27Þ

The collocation method proceeds by requiring this residual
to vanish at some sets of collocation points x1, x2, . . ., xP.
The procedure is summarized as follows [Li and Zhang,
2007]:
[20] First, choose P collocation points in the probability

space, xi = (x1
i , x2

i , . . ., xN
i )T, i = 1, 2,. . ., P, as described in

section 5.2. Second, substitute xi = (x1
i , x2

i ,. . ., xN
i )T into the

KL expansion to generate a representation of the input field.
For each of the P representations, the differential equations
are deterministic and can be solved to give an output y(x, t,
xi). This leads to P sets of independent equations that can be
solved in parallel or in sequence. With the P sets of
solutions and by letting RP(x, t, xi) = 0, one has

XP
j¼1

cj x; tð ÞFj xi
� �

¼ y x; t; xi
� �

; i ¼ 1; 2; . . . ;P: ð28Þ

For each location x and time step t, the above equations
form P linear equations for P unknowns cj(x, t). The matrix
of coefficients Fj(xi) are evaluated at the collocation point xi

and the right-hand sides y(x, t, xi) are solved from the

original governing equation for the given collocation point
in probability space. By solving this linear system, the
coefficients in the PCE expansion can be determined for
locations and time steps of interest.
[21] An alternate approach for determining the unknown

coefficients is the Galerkin approach [Ghanem and Spanos,
1991]. In this approach, the residual is required to be
orthogonal to the basis functions Fj(x) that are used in the
PCE expansion,

hRP x; t; xð ÞFjðxÞi ¼ 0; j ¼ 1; 2; . . . ;P: ð29Þ

Again, we have P constraints to determine the P unknown
coefficients cj(x, t). Note that equation (29) results in P
coupled equations. Solving these coupled equations could
be complicated and time-consuming, especially when one
considers spatially varying coefficients (when the solution is
not a random variable but a random field) or nonlinear
problems. On the other hand, the PCM method leads to
uncoupled equations, each of which can be solved with
existing, deterministic simulators. This feature makes the
PCM applicable to linear or nonlinear problems in a
straightforward manner.

5.2. Selection of the Collocation Points

[22] One key issue in the PCM approach is the selection
of collocation points. Previous studies have demonstrated
that for a given order of the PCE approximation the
coordinates of each collocation point should be selected
from the roots of the next higher-order orthogonal polyno-
mial. This technique, which is analogous to Gaussian
quadrature, will yield the result that is much more accurate
than the randomly selected samples [Webster et al., 1996;
Tatang et al., 1997]. For the case of second-order Hermit
PCE, the coordinates of collocation points are selected from
the roots of the third-order Hermit polynomial: x3 � 3x, i.e.,
�

ffiffiffi
3

p
, 0, and

ffiffiffi
3

p
. Then each collocation point is a combi-

nation of these three roots; two examples of the collocation
points are x1 = (x1

1, x2
1, . . ., xN

1 )T = (0, 0, . . ., 0)T and x2 =
(x1

2, x2
2, . . ., xN

2 )T = (
ffiffiffi
3

p
, 0,. . ., 0)T.

[23] The number of collocation points required is equal to
the number of coefficients to be determined P = (N + d)!/
(N!d!), where N is the dimensionality of the probability
space and d is the order of PCE approximation (2 in this
case). However, the number of available points satisfying
the preceding requirement, that is, the number of different
combinations of (d + 1) roots, is M = (d + 1)N. Note that M
is always larger than P, the number of points needed. As a
result, we may select P best combinations out of M
combinations in total. One may optimize the selection of
the collocation points with the following consideration [Li
and Zhang, 2007].
[24] 1. Keep as many points as possible in the region with

a high probability density. Actually the probability density
r(x) is the weight in the integral for calculating the
statistical moments.

y x; tð Þ ¼
Z
W
yðx; t; xÞrðxÞdx ð30Þ
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s2
y x; tð Þ ¼

Z
W

y x; t; xð Þ � hy x; t; xð Þið Þ2rðxÞdx ð31Þ

By setting ŷ(x, t, x) = y(x, t, x) at the region with a high
probability density one can increase the accuracy of the
estimated statistical moments. For instance, when x1, x2, . . .,
xN are N independent standard Gaussian random variables,
the random point x = (x1, x2, . . ., xN)

T follows the following
joint distribution:

rðxÞ ¼ 2pð ÞN=2
exp � xTx

2

� 	
; ð32Þ

and this density function reaches the highest value at the
origin point x = (0, 0, . . ., 0)T, which corresponds to the
mean parameter field. Therefore, this point is always kept.
In addition, from (32) it is seen that in selecting these points
one should keep as many zeros as possible in x.
[25] 2. The matrix with its components Fj(xi) in equation

(28) must have a full rank. Thus the equations are mutually
independent and a unique solution can be obtained. To
achieve this objective, one should first sort the available
points in an order of decreasing probability density. For
instance, the point (0, 0, . . ., 0) should be the first collocation
point. Then, for the candidate of the (i + 1)th collocation
point, the (i + 1)th row of matrix Fj(xi) must be linearly
independent with the previous i rows. Otherwise, this
candidate is abandoned and the point with the next highest
probability density should be tested. For given (N, d), the
sets of collocation points may be selected once and tabu-
lated for other simulations.
[26] If both y and Se are represented via the same basis

polynomial chaos, the collocation points for computing
these two output fields can be the same, which means that
the computational effort for solving the statistical moments
of the two output fields is almost the same as that for only
one output field. For example, if both y and Se are
represented via the second-order Hermit polynomial chaos
and the input random dimensionality is 10, each of the
output fields will have P = (10 + 2)!/(10!2!) = 66 coef-
ficients to be determined. We just choose 66 collocation
points from the combinations of the roots of the third-order
Hermit polynomial and solve the deterministic equations at
these points, for pressure head and water content simulta-
neously, rather than select 2P collocation points and solve
the deterministic equations 2P times, P for pressure and P
for water content.

6. Illustrative Examples

[27] We consider unsaturated flow in a two-dimensional
vertical cross section of size 3 by 3 m, discretized into 30 �
60 rectangular elements of 0.1 by 0.05 m. We specify a
constant deterministic flux rate Q = �0.005 m/d at the upper
boundary (negative value standing for infiltration), a con-
stant deterministic pressure head y = 0 (water table) at the
bottom, and no flow at the left and right boundaries. The
saturated and residual water content are qs = 0.4 and qr =
0.01, respectively.
[28] Note that both Ks and a are positive quantities and n

is always larger than one. Here we assume that the log

saturated hydraulic conductivity f = ln(Ks), the log pore size
distribution parameter b = ln(a) and the fitting parameter
s = ln(n � 1) are second-order stationary Gaussian random
fields with mean hUi and separate exponential covariance

CU(x1, x2) = sU
2 exp �

P2
i¼1

jx1i�x2ij
lUi

� �
, where U = f, b, s; sU

2 is

the variance, lU is the correlation length of U. The sub-
scripts i = 1, 2 refer to the vertical and horizontal dimen-
sions, respectively. The variability of a parameter can also
be given in terms of the coefficient of variation CVV = sV/
hVi, for V = Ks, a, (n � 1). The mean values of the three
input parameters are set to be hKsi = 1m/d, hai = 2m�1, and
hni = 1.4. With the known mean and the coefficient of
variation of a lognormal random field V, the moments of the
corresponding normal random field U = ln V can be easily
calculated via following relations [e.g., Zhang, 2002]:

hUi ¼ 2 lnhV i � 0:5 ln hV i2 1þ CV 2
V

� �h i
; ð33Þ

s2
U ¼ ln 1þ CV 2

V

 �
; ð34Þ

or conversely,

hV i ¼ exp hUi þ 0:5s2
U

 �
; ð35Þ

s2
V ¼ exp s2

U

� �
� 1

 �
exp 2hUi þ s2

U

 �
: ð36Þ

[29] We design a series of model cases with different
model complexity (steady flow with single-input ran-
dom field, cases 1–4; steady flow with multiple-input
random fields, case 5; transient flow with multiple-input
random fields, case 5). For each case, we first derive the
statistical moments (mean and variance) of output fields
using the Probabilistic Collocation Method (PCM). For the
purpose of comparison, we conduct Monte Carlo (MC)
simulations with a large number of realizations. For each
single run of Monte Carlo or PCM simulations, the FEHM
code [Zyvoloski et al., 1997] is used to solve the determin-
istic differential equations. Unless otherwise noted, the
comparison of results from the MC method and the PCM
is illustrated only along the central vertical line (x2 = 1.5 m).
In case 1, we demonstrate the calculated statistical moments
of both the pressure head and the effective saturation. In
other cases, only the results of pressure head are shown for
the sake of succinctness.

6.1. Single Random Input

[30] In the first four cases of steady flow, we treat a and n
to be deterministic but f = ln(Ks) as the only input random
field with different levels of variability and different corre-
lation lengths as shown in Table 1. These cases are designed
to explore the impact of the input variability and the
correlation length on the accuracy and efficiency of the
PCM. As described previously, we decompose f = ln(Ks)
using the KL expansion and retain the first N random terms:
f(x, w) = f (x) +

PN
i¼1xfi(w)

ffiffiffiffiffihfip ~f i(x). The output random
fields, the pressure head and the water content, can be written
as y = y(x, xf 1, xf 2,. . ., xfN) and Se = Se(x, xf 1, xf 2,. . ., xf N),
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respectively, indicating that the dimensionality in the prob-
ability space is N.
[31] The contours of some selected eigenfunctions in case

1 are plotted in Figure 1. It is shown that the first
eigenfunction represents the spatial variability on the large
scale and the subsequent eigenfunctions represent the spa-
tial variability on smaller scales. The eigenvalues and their
summation for cases 1 and 3 are shown in Figure 2. A
decaying trend of eigenvalues can be observed, which

suggests that more input variability is distributed on large
spatial scales. The decaying rate of eigenvalues depends on
the correlation length relative to the domain size. The
eigenvalues in case 1 decay faster than those in case 3,
where the correlation scale is smaller. In the first three cases,
we keep 20 terms in the KL expansion and use the second-
order PCE. Under these conditions, 231(= 22!/20!/2!) times
of simulations are needed. For comparison, we explore the
convergence of MC simulations based on simulations up to

Table 1. Summary of the Parameters in All Illustrative Cases

Cases
hKsi
(m/d)

CVKs

(%)
lfx
(m)

lfy
(m)

hai
(1/m)

CVa
(%)

lbx
(m)

lby
(m) hni

CV(n�1)

(%)
lsx
(m)

lsy
(m)

Random
Dimensionality

1 1 100 1 1 2 0 NA NA 1.4 0 NA NA 20
2 1 50 1 1 2 0 NA NA 1.4 0 NA NA 20
3 1 100 0.5 0.5 2 0 NA NA 1.4 0 NA NA 20
4 1 100 0.5 0.5 2 0 NA NA 1.4 0 NA NA 30
5 1 100 0.6 0.3 2 20 0.6 0.3 1.4 10 0.6 0.3 50 + 50 + 50 = 150

Figure 1. Selected eigenfunctions for case 1 (lx = ly = 1.0m).
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8000 realizations. In particular, we are interested in the
accuracy of MC results from 231 realizations, which repre-
sent the more or less equivalent computational cost required
by the PCM. The statistical moments computed from all
8000 MC realizations are considered to be the ‘‘true’’
solutions for assessing the accuracy of the PCM. The mean
and variance of pressure head and effective saturation from
case 1 are plotted in Figure 3. First, from the results, we
observe that the PCM solutions are in good agreement with
those from 8000 MC simulations. However, the MC results
computed from 231 realizations deviate substantially from
the MC results from 8000 realizations (‘‘true’’ solutions).
As shown in Figure 4, for the mean pressure head, about
2000 MC simulations are needed to obtain the convergent
result in this example while for the pressure head variance,
about 4000 MC simulations are necessary to yield a
convergent result. Since the computational efforts for
231 PCM simulations are more or less the same as those
for 231 MC simulations, the comparison indicates that the
PCM is computationally more efficient than the MC simu-

lations. Second, the pressure head variance from the PCM is
symmetric with respect to the vertical central line (shown in
Figure 5), which is consistent with the symmetric boundary
conditions on the left and right boundaries. For the MC
approach, the symmetry of the pressure variance can be
achieved only when a large number of simulations are
conducted.
[32] We also compute the statistical moments of pressure

head in case 1 with a reduced form of PCE as shown in
equation (24). Under this condition, only 41(= 1 + 2 � 20)
times of simulations are required. The result is added to
Figures 3a and 3b. It reveals that the leading term strategy
gives accurate solution with a much less computational
effort. Furthermore, it is observed that the profiles of the
curves in Figures 3a and 3b are quite similar to that in
Figures 3c and 3d. This is because the effective saturation is
directly dependent on the pressure head. At the upper part of
the domain, a lower-pressure head leads to a lower water
content and a large variability in the water content is
consistent with a large variability in the pressure head.
[33] Figure 6 compares the pressure head variance

derived from both the MC method and the PCM for different
degrees of conductivity variability and two different corre-
lation lengths. In cases 1 and 2, all input parameters are the
same, except that the conductivity variability in case 2 is
smaller than that in case 1. It is seen from Figure 6 that the
PCM is more accurate when the conductivity variability is
smaller. In cases 1 and 3, all input parameters are the same,
except that the correlation length of the input random field
in case 3 is smaller than that in case 1. Figure 6 indicates
that the accuracy of the PCM decreases with the decrease of
the correlation length. The reason is that the accuracy of the
truncated KL expansion depends on the ratio of the domain
size and the correlation length. It has been shown that, for a
small correlation length, more terms are needed in the
truncated KL expansion to retain the same accuracy [Ghanem
and Spanos, 1991; Zhang and Lu, 2004]. We also run case
4 in which all the input parameters are the same as those in
case 3 but the number of retained KL terms is 30. Under this
condition, 496 simulations are required to implement the
second-order PCM approach. It can be seen that when
more terms are included in the truncated KL expansion,
the results from the PCM are closer to the reference MC
results.

6.2. Multiple-Input Random Fields

[34] One of the advantages of the PCM is the ease in
dealing with multiple-input random parameters. In the next
illustrative case (case 5), we make the following assump-
tions which are closer to the real-world conditions: (1) All
the three soil parameters in the van Genuchten model (U = f,
b, s) are assumed to be random fields and (2) they are
partially correlated: f and b are positively correlated and
they are both negatively correlated with s. These assump-
tions are consistent with previous experiments [Russo and
Bouton, 1992; Simunek et al., 1998].
6.2.1. Steady Flow
[35] We first calculate the steady state flow under the

boundary conditions given in the previous cases. We
assume the correlation coefficients between the three ran-
dom parameters are: gfb = 0.8, gfs = �0.3, gbs = �0.6. The
statistical properties of the input random fields are given in
Table 1. We represent the three random fields as described

Figure 2. Eigenvalues of the separate exponential covar-
iance with different correlation scales.
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in equation (18). Because of the small correlation length, we
keep N = 50 KL terms in the representation of each input
random field. Thus the total random dimensionality is 3N =
150. For such a high-dimensional problem, a full 2nd order
PCE expansion of the output field would contain too many
terms (P = (150 + 2)!/150!/2! = 11476) and the computa-
tional cost for determining all the coefficients will make the
PCM approach not practical. Under this condition, the
‘‘leading term approximation’’ strategy described in section
4.2 is adopted. The total number of terms is reduced to P =
1 + 2 � (3N) = 301. The mean and variance of pressure
derived from both the PCM and MC are compared along the
central vertical profile, as shown in Figure 7. It is seen that
the results given by the two approaches are in good
agreement, which proves the capability of the PCM in
quantifying the model uncertainty induced by multiple
random inputs. Furthermore, it is reflected that the leading
term approximation is applicable for this problem. From the
results, we can also give some qualitative analysis of
the distribution of the pressure. First, at the bottom portion
(the portion right above the water table), the mean pressure

linearly decreases with respect to the elevation, with a slope
near �1. Hence the vertical gradient of the total head y + x1
is very small at the bottom portion, compared with the top
portion. This is because the saturation near the water table is
much larger than in the regions far from it. So a small
gradient in this portion is enough to induce the same flow
rate as in the top portion. On the other hand, the mean
pressure finally reaches a constant as the elevation increases
to the upper boundary, which reveals that the flow is mainly
driven by the gravity. Second, we can observe that the
variance of the pressure head is zero near water table. This
is consistent with the constant pressure boundary condition
we assigned at the lower boundary. For the upper boundary,
there is not such a constraint. The variance of pressure
continually grows as the elevation increases and reaches the
maximum at the upper boundary. This indicates that the
flow in the ‘‘gravity dominated zone’’ can be the most
affected by the variability of soil properties.
6.2.2. Transient Flow
[36] Finally, we test the capability of the PCM approach

in dealing with transient problems. Following the last

Figure 3. Comparison of results from MC and PCM methods for case 1 (CVKs = 100%, lx = ly = 1.0m)
along the vertical central line.
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example, we use the steady state solution (see Figure 7) as
the initial condition and assume that the flow rate at the
upper boundary changes from �0.005 m/d to �0.003 m/d at
time t = 0 days. The transient process in the following time
steps is simulated. The statistical moments of the pressure
head after 3 and 15 days given by both the PCM and MC
are plotted in Figure 8. Again, it is shown that the results
given by the PCM and MC are in excellent agreement. By
comparing the means of pressure head at the three time
steps (t = 0, t = 3 and t = 15 days), we can observe the
decreasing trend of pressure head, induced by the reducing
of flow rate at the upper boundary. The pressure at the top
portion changes first, and the middle portion follows, while
the pressure at the bottom portion keeps unchanged. This
reveals that the pressure distribution at the top portion is
more sensitive to the infiltration rate than the lower portion.
As time approaches, a new steady state is reached. On the
other hand, the variance of the pressure changes only slightly
as time approaches, which suggests that the uncertainty

Figure 4. Mean and variance given by MC with different
numbers of simulations (case 1).

Figure 5. Contours of the pressure variance (m2) in case 1.
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associated with the pressure distribution is not as sensitive to
the flow rate as the mean pressure is.

7. Discussions and Conclusions

[37] Although the stochastic equations describing flow in
the unsaturated zone is complex because of the nonlinearity,
in this study we demonstrated that the Probability Colloca-
tion Method (PCM) is still applicable. Like the MC method,
the PCM is based on solving a set of deterministic equa-
tions. The difference between two approaches is that the
PCM requires the solutions at a set of selected collocation
points whereas the MC requires the solutions at random
sampling points. Both approaches can be implemented
straightforwardly with the availability of a deterministic
simulator. Like the MC, the PCM can be applied to various
problems, either linear or nonlinear, either with single or
multiple inputs.
[38] Because the stochastic structures of both input and

output random fields have been carefully considered, the

Figure 6. Comparison of pressure variance derived from
PCM and MC with different input variances and different
correlation lengths (cases 1, 2, 3, and 4). Figure 7. Statistics of pressure head with three mutually

correlated input fields (case 5).
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PCM can capture the stochastic behavior of the dependent
variables such as the pressure field and the effective
saturation by a small number of model simulations. Hence
the efficiency of the PCM is significantly increased com-
pared to the MC. This advantage is crucial in solving large-
scale problems because solving each deterministic equation
may require a large computational effort.
[39] As shown in the illustrative examples, the PCM

performs better when the input correlation scale is relatively
large and the input variance is relatively small. If the
correlation scale is too small or the input variance is too
large, the PCM may yield inaccurate results. Actually, the
truncations in the KL and PCE approximations are two
major sources of errors in the PCM procedures, and the
accuracy of KL and PCE approximations depend on the
input correlation length and input variance, respectively.
Our ongoing research attempts to derive posterior error
estimators, which may be used to determine the proper
random dimensionality of the KL expansions and the

optimal order of PCE approximations to balance the solu-
tion accuracy and computational efficiency.

Notation

B Specific moisture capacity
C Covariance function

CV Coefficient of variation
cj Coefficient of the jth PCE term
D Physical domain
d Order of polynomial chaos
f f = ln(Ks), log saturated hydraulic conductivity
g Sink/source term

HB Prescribed pressure head-on Dirichlet boundary seg-
ments

K Unsaturated hydraulic conductivity
Ks Saturated hydraulic conductivity
m Fitting parameter in the van Genuchten-Mualem

model
N Random dimensionality (Number of KL terms

retained to represent the mean-removed fields)
n Fitting parameter in the van Genuchten-Mualem

model
P Number of PCE terms
Q Prescribed specific discharge on Neumann boundary

segments
q Specific discharge

RP Residual between the true solution and PCE approx-
imation with P terms

Se Effective saturation
s s = ln(n � 1)
U Normal random input field (U = f, b, s)
V Lognormal random input field (V = Ks, a, (n � 1))
x Cartesian coordinates in the physical domain
x1 Elevation
a Fitting parameter in the van Genuchten-Mualem

model
b b = ln(a)
Fj Hermit polynomials
GD Dirichlet boundary
GN Neumann boundary
hi Eigenvalues
l Correlation length
qe Effective water content
qr Residual water content
qs Saturated water content
r Probability density
s2 Variance
W Probability space
w Point in the probability space
x Collocation point
xi Orthogonal standard Gaussian random variables
y Pressure head
ŷ PCE approximation of the pressure head
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